
GREEN ECONOMICS 

Vol.1, No.2, 2023, pp.82-110  

  

 

 
82 

 

ASSESSING THE ENVIRONMENTAL IMPACT OF HYDROGEN  

FUEL CELL TECHNOLOGIES (PEMFCs, SOFCs, AFCs):  

A CRADLE-TO-GATE ATTRIBUTIONAL LIFE  

CYCLE ANALYSIS 

 

Ayat-Allah Bouramdane* 

 

Laboratory of Renewable Energies and Advanced Materials (LERMA),  

College of Engineering and Architecture, International University of Rabat (IUR),  

Sala Al Jadida, Morocco 
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contributing to their Global Warming Potential (GWP). Findings indicate that hydrogen production is a 
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processes, and integrating renewable energy sources, offering actionable insights for sustainable 

technology development and a cleaner energy future. 

Keywords: Alkaline Fuel Cells (AFCs), Attributional Life Cycle Assessment, Environmental Impact, 

Hydrogen, Proton Exchange Membrane Fuel Cells (PEMFCs), Solid Oxide Fuel Cells (SOFCs). 

 

Corresponding Author: Ayat-Allah Bouramdane, Laboratory of Renewable Energies and Advanced 

Materials (LERMA), College of Engineering and Architecture, International University of Rabat (IUR), 

IUR Campus, Technopolis Park, Rocade Rabat-Salé, Sala Al Jadida, 11103, Morocco,  

e-mail: ayatallahbouramdane@gmail.com  

 

Received: 18 July 2023;              Accepted: 5 September 2023;             Published: 30 September 2023. 

 

 

1.       Introduction  

 

1.1.  Research Motivation 

In the pursuit of a sustainable and low-carbon energy (Bouramdane, 2023a; 2023b) 

to fight against climate change (on temperature and precipitation (Bouramdane, 2022a; 

2023c; 2023d), heatwaves and wildfires (Bouramdane, 2022b; 2022c), agriculture 

(Bouramdane, 2023e), water resources (Bouramdane, 2023f) and associated economic 

and non-economic damages (Bouramdane, 2023g), hydrogen fuel cell technologies have 

emerged as a compelling solution (Bouramdane, 2023h; 2023i).  These technologies 

along with other renewable technologies (Bouramdane, Oct. 2021; 2022d),  (e.g., offshore 

floating photovoltaic (Bouramdane, 2023j; 2023k), utility-scale photovoltaic and 

concentrated solar power (Bouramdane, 2022e; 2018), onshore and offshore wind 

(Bouramdane, 2023l; 2023m) and agrivoltaic systems (Bouramdane, 2022f) and smart grids 

(Bouramdane, (2023n), have the potential to revolutionize energy systems by offering clean 

and efficient means of electricity generation and transportation (Bouramdane, 2022g; 

2022h). As hydrogen fuel cell applications expand across various sectors (Staffell et al., 
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2019), it becomes imperative to comprehensively assess their environmental impact to 

ensure that they align with the objectives of mitigating climate change and reducing 

greenhouse gas emissions. 

 

1.1. Existing Research and Knowledge Gap 

Previous research has largely focused on the operational advantages (Li et al., 2022) 

and performance characteristics of hy drogen fuel cell technologies (Gillibrand et al., 

1967), highlighting their efficiency (Haseli, 2018), reliability (Zhai et al., 2022, 

September) and reduced emissions of local air pollutants (Cyril & Saravanan, 2020). 

While these merits are indisputable, there is a significant knowledge gap regarding their 

holistic environmental footprint. Limited attention has been given to assessing the entire 

life cycle of these technologies, encompassing the stages of raw material extraction, 

production, utilization, and end-of-life disposal. This knowledge gap poses a critical 

challenge, as it hinders our ability to make informed decisions and develop strategies that 

prioritize sustainability in the adoption of hydrogen fuel cell technologies. 

 

1.2. Research Questions and Originality of This Study 

This study aims to address this pressing knowledge gap by conducting a 

comprehensive Attributional Life Cycle Assessment (ALCA) of three prominent 

hydrogen fuel cell technologies: Proton Exchange Membrane Fuel Cells (PEMFCs), Solid 

Oxide Fuel Cells (SOFCs) and Alkaline Fuel Cells (AFCs). The central research 

questions guiding this investigation are as follows: 

1. How do these hydrogen fuel cell technologies compare in terms of their 

environmental impact, specifically in the context of Global Warming Potential 

(GWP)? 

2. What are the critical stages within the life cycle of each technology that contribute 

significantly to its overall environmental footprint? 

3. What recommendations can be derived from these findings to enhance the 

environmental sustainability of each technology? 

The originality of this study lies in its holistic approach to evaluating the 

environmental performance of hydrogen fuel cell technologies, addressing the entire life 

cycle and providing tailored recommendations for each technology based on the ALCA 

results. 

 

1.3.  Methodology 

The research methodology employed in this study involves conducting an ALCA 

that considers a "cradle-to-gate" system boundary. The environmental impact, 

specifically GWP, will be assessed for each technology across key life cycle stages, 

including hydrogen production and fuel cell assembly and manufacturing. This 

assessment will rely on hypothetical values for illustrative purposes. Real-world 

assessments would necessitate the use of precise data and context-specific parameters. 

 

1.4.  Outline 

This research article is structured as follows: Section 1 provides the research 

motivation (Section 1.1), identifying existing knowledge gaps (Section 1.2), outlining 

research questions, and presenting the originality of the study (Section 1.3). 
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Section 2 details the methodology (Section 1.4) employed in conducting the ALCA, 

including assumptions and the analytical framework (Section 2.1). Additionally, this 

section examines the operation, advantages, disadvantages and applications of the three 

relevant hydrogen fuel cells used in this study: Proton Exchange Membrane Fuel Cells 

(PEMFCs), Solid Oxide Fuel Cells (SOFCs) and Alkaline Fuel Cells (AFCs) (Section 

2.2). 

Section 3 presents the findings of the ALCA, including the GWP values for each 

technology and the critical stages identified (Section 3.1), while offering 

recommendations for enhancing the environmental sustainability of hydrogen fuel cell 

technologies (Section 3.2). 

In Section 4, the results are meticulously scrutinized to unveil their implications 

and limitations. Additionally, this section provides valuable recommendations aimed at 

bolstering the environmental sustainability of hydrogen fuel cell technologies. 

Section 5 summarizes the key findings, contributions and potential impacts of this 

study while highlighting avenues for future research. 

Through this comprehensive assessment, this research aims to contribute valuable 

insights that inform the sustainable adoption and development of hydrogen fuel cell 

technologies, driving progress towards a cleaner and more sustainable energy landscape. 

 

1.5. Outline 

This research article is structured as follows: Section 1 provides the research 

motivation (Section 1.1), identifying existing knowledge gaps (Section 1.2), outlining 

research questions, and presenting the originality of the study (Section 1.3). 

Section 2 details the methodology (Section 1.4) employed in conducting the ALCA, 

including assumptions and the analytical framework (Section 2.1). Additionally, this 

section examines the operation, advantages, disadvantages, and applications of the three 

relevant hydrogen fuel cells used in this study: Proton Exchange Membrane Fuel Cells 

(PEMFCs), Solid Oxide Fuel Cells (SOFCs), and Alkaline Fuel Cells (AFCs) (Section 

2.2). 

Section 3 presents the findings of the ALCA, including the GWP values for each 

technology and the critical stages identified (Section 3.1), while offering 

recommendations for enhancing the environmental sustainability of hydrogen fuel cell 

technologies (Section 3.2). 

In Section 4, the results are meticulously scrutinized to unveil their implications 

and limitations. Additionally, this section provides valuable recommendations aimed at 

bolstering the environmental sustainability of hydrogen fuel cell technologies. 

Section 5 summarizes the key findings, contributions, and potential impacts of this 

study while highlighting avenues for future research. 

Through this comprehensive assessment, this research aims to contribute valuable 

insights that inform the sustainable adoption and development of hydrogen fuel cell 

technologies, driving progress towards a cleaner and more sustainable energy landscape. 

 

2. Methodology 

2.1. Life Cycle Assessment (LCA) Framework 

Life Cycle Assessment (LCA) serves as a systematic and comprehensive 

methodology employed to assess the environmental impacts of a product, process or 

system throughout its entire life cycle. This approach serves as a valuable tool for gaining 
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insights into the environmental consequences of various activities or processes while 

identifying opportunities for enhancing sustainability and resource efficiency (Silva, 

2021). 

In the context of hydrogen fuel cell technologies such as Proton Exchange 

Membrane Fuel Cells (PEMFCs), Solid Oxide Fuel Cells (SOFCs) and Alkaline Fuel 

Cells (AFCs), LCA proves essential for understanding their environmental footprint. It 

investigates all stages in the life cycle, encompassing (Bergerson et al., 2020): 

• Raw Material Acquisition: This stage involves the extraction and processing of 

raw materials needed for the fuel cell technology. 

• Manufacturing: Here, the production and assembly of the fuel cell technology 

take place. 

• Use Phase: This pertains to the usage of the technology, including energy 

consumption and maintenance requirements. 

• End-of-Life: This stage deals with the disposal, recycling, or other forms of 

treatment of the fuel cell technology at the end of its life cycle. 

LCA finds extensive application across various industries, enabling assessments of 

product sustainability in domains ranging from agrifood (Notarnicola et al., 2017) and 

clothing (Zamani et al., 2018) to transportation (Jakub et al., 2022) and battery energy 

systems  (Porzio & Scown, 2021). By facilitating informed decision-making, LCA 

supports environmental protection and contributes to a more sustainable future (Saidani 

et al., 2022). 

There are several types or variants of LCA, each tailored to address specific 

objectives and boundaries (Finkbeiner, 2016). Some of the most common types of LCA 

include: 

 

1. Attributional LCA (ALCA): (Finnveden et al., 2022; Bamber et al., 2020) 

 Purpose: ALCA is the most common type of LCA and is often used for assessing 

the environmental impacts of products or systems at a specific point in time. 

 Focus: It quantifies the environmental inputs and outputs associated with a 

product or process and attributes environmental impacts to specific life cycle 

stages. 

 Data: ALCA relies on historical or current data and does not consider changes 

over time. 

2. Consequential LCA (CLCA): (Bamber et al., 2020; Elouariaghli et al., 2022) 

 Purpose: CLCA focuses on the potential consequences of a decision or change in 

a system, taking into account the wider effects on the economy, environment and 

society. 

 Focus: It considers indirect and possibly unexpected effects that may result from 

a particular decision or change in a system. 

 Data: CLCA uses modeling and scenario analysis to predict potential future 

outcomes, making it suitable for evaluating the impacts of policy changes or 

technological shifts. 

3. Prospective LCA (PLCA): (Rüdisüli et al., 2022; Thonemann et al., 2020) 

 Purpose: PLCA is used for assessing the environmental consequences of products 

or systems that are in the planning or design phase, before they are actually 

implemented. 

 Focus: It helps designers and decision-makers identify and mitigate potential 

environmental hotspots in new products or processes. 
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 Data: PLCA relies on estimates, simulations and design specifications, making it 

a forward-looking approach. 

4. Retrospective LCA (RLCA): (Morales et al., 2023) 

 Purpose: RLCA is conducted after a product or system has been in use for some 

time to evaluate its actual environmental performance. 

 Focus: It assesses how well the product or system has met its environmental goals 

and identifies areas for improvement. 

 Data: RLCA uses real-world data and observations, making it valuable for 

assessing the effectiveness of sustainability initiatives. 

5. Hybrid LCA: (Zheng et al., 2022; Yu et al., 2021) 

 Purpose: Hybrid LCA combines elements of both attributional and consequential 

approaches to provide a more comprehensive view of environmental impacts. 

 Focus: It considers both the direct effects (ALCA) and the broader system-level 

consequences (CLCA) of a product or process. 

 Data: Hybrid LCA integrates data from various sources, including historical data, 

modeling, and scenario analysis. 

6. Input-Output LCA (IO-LCA): (Wei et al., 2022; Wu & Han, 2020) 

 Purpose: IO-LCA focuses on analyzing the environmental impacts associated 

with the entire economy by examining the flow of goods and services between 

sectors. 

 Focus: It provides a macroeconomic perspective on environmental impacts and is 

often used for policy analysis. 

 Data: IO-LCA relies on national economic and environmental data and requires 

complex modeling. 

7. Sectoral LCA:  (Stewart et al., 2018) 

 Purpose: Sectoral LCA narrows the focus to specific industrial sectors or supply 

chains within an economy. 

 Focus: It assesses the environmental performance of a particular sector or 

industry, making it useful for sector-specific sustainability assessments. 

 Data: Sectoral LCA uses data specific to the selected industry or supply chain. 

The choice of LCA type depends on the specific goals, stage of the product or 

process life cycle, and the level of detail required for the assessment. Each type of LCA 

has its strengths and limitations and selecting the most appropriate approach is essential 

for obtaining meaning results (Finkbeiner, 2016). 

In this study, we employ Attributional Life Cycle Assessment (ALCA) to 

quantitatively evaluate the environmental impacts of hydrogen fuel cell from various 

technologies, including PEMFCs, SOFCs and AFCs. 

Key components and concepts integral to ALCA include (Figure 1). 

1. Goal and Scope Definition: Clearly defining the purpose and scope of the ALCA 

study is crucial. In this context, it involves assessing the environmental impacts of 

hydrogen fuel cell technologies (Silva, 2021). 

2. Functional Unit for Comparison and System Boundaries: Identifying the 

functional unit for comparison and setting the system boundaries, which dictate the life 

cycle stages considered are fundamental (Arzoumanidis et al., 2020). In this study, we 

assume the functional unit is producing 1 megawatt-hours (MWh) of electricity using 

each fuel cell technology. This choice allows for a direct and meaningful comparison 

of the environmental impacts associated with hydrogen production from these 
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technologies, making it a standard and widely used unit of measurement in hydrogen-

related assessments. System boundaries can be “cradle-to-gate”, which covers stages 

from raw materials extraction to product leaving the production facility or “cradle-to-

grave”, encompassing the entire life cycle, including manufacturing, distribution, use 

and end-of-life scenarios. The selection depends on the study’s goals and data 

availability (Li et al., 2014). In the case of this study, a “cradle-to-gate” boundary was 

employed, focusing on the critical stages directly affecting the environmental 

performance of hydrogen fuel cell technologies. 

3. Life Cycle Inventory (LCI): During the inventory analysis phase, data on inputs and 

outputs associated with each life cycle stage are collected and quantified (Surovtseva 

et al., 2022; Munasinghe et al., 2021). This includes materials, energy, water 

consumption, emissions, and waste generation. 

4. Life Cycle Impact Assessment (LCIA): LCIA translates inventory data into potential 

environmental impacts (Ji & Wang, 2021), considering various categories, like Global 

Warming Potential (GWP) i.e., to calculate the carbon dioxide (CO2) equivalent 

emissions and their impact on climate change (Neubauer, 2021), Acidification Potential 

i.e., to assess the po tential for acid rain formation (Provolo et al., 2018). Eutrophication 

Potential i.e., to evaluate nutrient pollution of water bodies (Preisner et al., 2020) and 

Human Toxicity and Ecotoxicity Models i.e., to estimate potential harm to human 

health and ecosystems (Rosenbaum et al., 2008). This study particularly emphasizes 

GWP as the impact assessment method. Characterization Factors (CFs) are used to 

convert the quantities of emissions, resource use, and other LCI data into impact scores 

for specific environmental categories. These factors relate the environmental emissions 

or resource use to their potential impacts (Rosenbaum et al., 2008).  For example (1): 

 

Impact Score = LCI Data × CF                                (1) 

 Global Warming Potential (GWP): CFs are used to convert greenhouse gas 

emissions (e.g., CO2, CH4, N2O) into CO2 - equivalents based on their respective 

global warming potentials over a specified time horizone  (Neubauer, 2021). 

𝐶𝑂2 =  ∑(𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑖 ∗ 𝐺𝑊𝑃𝑖)

𝑖

 

Where: CO2 is the carbon dioxide equivalent emission. 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑖 are the emissions of 

different greenhouse gases (e.g., CO2, CH4, N2O). 𝐺𝑊𝑃𝑖 are the Global Warming 

Potential factors for each greenhouse gas.  

 Eutrophication Potential: CFs relate nutrient emission (e.g., nitrogen and 

phosphorous compounds) to the potential for eutrophication in water bodies 

(Preisner et al., 2020).  

𝐸𝑃 =  ∑(𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑖 ∗  𝐸𝑃𝐹𝑖)

𝑖

 

Where: EP is the eutrophication potential. 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑖 are the emissions of nutrients 

(e.g., nitrogen, phosphorus). 𝐸𝑃𝐹𝑖 are the Eutrophication Potential Factors for each 

nutrient. 
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 Human Toxicity Potential (HTP):  

𝐻𝑇𝑃 =  ∑(𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑖 ∗  𝐻𝑇𝑃𝐹𝑖)

𝑖

 

Where: HTP is the human toxicity potential. 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑖 are the emissions of toxic 

substances (e.g., heavy metals, organic pollutants). 𝐻𝑇𝑃𝐹𝑖 are the Human Toxicity 

Potential Factors for each toxic substance. 

 Eco-Toxicity Potential (ETP): 

𝐸𝑇𝑃 =  ∑(𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑖 ∗  𝐸𝑇𝑃𝐹𝑖)

𝑖

 

Where:  𝐸𝑇𝑃  is the eco-toxicity potential. 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑖 are the emissions of eco-toxic 

substances. 𝐸𝑇𝑃𝐹𝑖 are the Eco-Toxicity Potential Factors for each eco-toxic substance. 

5. Interpretation: This phase involves analyzing and evaluating the results to identify 

environmentally significant stages and impacts for each technology. It also facilitates 

comparisons of the environmental performance of different hydrogen production 

technologies. 

6. Sensitivity Analysis (Optional): Conducting sensitivity analysis allows for an 

assessment of how uncertainties and variations in data influence ALCA results (Lo Piano 

& Benini, 2022). 

7. Monte Carlo Simulation (Optional): In more advanced LCA analysis, Monte Carlo 

simulations may be used to account for uncertainties and variability in the data. Monte 

Carlo simulations involve running the LCA model with randomly sampled input data to 

estimate the range of possible outcomes (Sun & Ertz, 2020). 

8. Recommendations: ALCA results can inform decisions in product design, process 

optimization and policy development. Identifying areas with the most significant 

environmental impacts empowers stakeholders to focus on improving the environmental 

performance of hydrogen fuel cell technologies. 

 

2.2. Relevant Hydrogen Fuel Cell Technologies 

Hydrogen fuel cell technologies have been advancing steadily, with various 

approaches and applications. The main types of hydrogen fuel cells include: 

 

2.2.1. Proton Exchange Membrane Fuel Cells (PEMFCs) 

Proton Exchange Membrane Fuel Cells (PEMFCs) generate electricity through an 

electrochemical process that involves the conversion of hydrogen and oxygen into water 

(Figure 2). They use a solid polymer electrolyte membrane.  Hydrogen gas is supplied to 

the anode (negative electrode), where it is catalytically split into protons (H+) and 

electrons (e-). The protons move through the electrolyte membrane to the cathode 

(positive electrode), while the electrons travel through an external circuit, creating an 

electric current. At the cathode, oxygen from the air is supplied and it combines with the 

protons and electrons to form water as the only byproduct (Vishnyakov, 2006; Tellez-

Cruz et al., 2021). 

PEMFCs operate at relatively low temperatures, typically in the range of 60–80°C, 

reducing the need for extensive thermal management systems, which simplifies design 

and maintenance in certain applications. This low temperature operation allows for rapid 

start-up times (i.e., PEMFCs can start and reach their full operating capacity within 
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seconds) [69] and makes PEMFCs suitable for applications that require rapid response 

times, such as vehicles and portable electronics (Liu, 2018; Hamrock & Herring, 2012). 

PEMFCs are known for their high energy conversion efficiency, typically 

exceeding 50% in real-world applications. 

This efficiency means they can effectively convert hydrogen fuel into electricity 

(Tianyi & Lianfeng, 2022, November; Xue et al., 2021). 

They offer a high power density, which means they can deliver a significant amount 

of electrical power relative to their size and weight, making them ideal for applications 

where space and weight constraints are important (Guan et al., 2023; Xue et al., 2021 ).  

PEMFCs produce only water as a byproduct when hydrogen is used as a fuel source. 

This makes them environmentally friendly and a potential solution for reducing 

greenhouse gas emissions in various applications (Fernandes et al., 2023, April).  

PEMFCs operate quietly, making them ideal for applications where noise reduction 

is important (Villalba-Herreros et al., 2020).  

One of the primary disadvantages of PEMFCs is their high cost. They require 

expensive catalyst materials, such as platinum, and complex manufacturing processes, 

which can make them economically challenging to implement on a large scale (Xiao et 

al., 2022; Xue et al., 2021).  

PEMFCs can suffer from durability issues over time (Xiao et al., 2022). Factors 

like catalyst degradation, membrane degradation, and fuel impurities can affect their 

long-term reliability. Extensive research is ongoing to improve durability. 

Hydrogen is the ideal fuel for PEMFCs, but its storage and distribution present 

significant challenges. Handling and storing hydrogen can be hazardous, and building an 

infrastructure for hydrogen distribution is expensive (Dolciamore et al., 2013, March).  

PEMFCs primarily rely on hydrogen as a fuel source. While hydrogen is abundant, 

the limited availability of hydrogen refueling stations can restrict the widespread adoption 

of PEMFC vehicles (Karthikeyan et al., 2023). 

While the low operating temperature is an advantage in some cases (Liu, 2018; 

Hamrock & Herring, 2012), it can be a disadvantage in colder climates where additional 

heating is required to maintain optimal performance (Lim et al., 2022, October). 

Although PEMFCs produce zero tailpipe emissions, the production of hydrogen 

may involve emissions if it is derived from fossil fuels. Green hydrogen production 

methods are being developed to address this concern (Bouramdane, 2023p). 

PEMFCs require precise water management to prevent flooding or drying out of 

the electrolyte membrane, which can be challenging, especially in dynamic operating 

conditions (Xiao et al., 2023).  

PEMFCs are commonly used in fuel cell vehicles (FCVs) (Khadhraoui et al., 2022), 

where they provide a clean and efficient alternative to internal combustion engines. They 

are also used in portable power generators (Jannelli et al., 2007), backup power systems 

(Cheng et al., 2022, February) and small-scale stationary applications (Delgado et al., 

2020). PEMFCs have found applications in various industries (Watve et al., 2021), 

including telecommunications (Dogterom & Kammerer, 2005, September), aerospace 

(Walker & Civinskas, 2004) and material handling equipment (Liu, 2018).  
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Figure 1:  The four main phases of a life cycle assessment (LCA). (1)  Goal  and  scope  

definition:  The first step is to define the goal and scope of the LCA. This includes 

identifying the product or service to be assessed, the system boundaries and the 

environmental impact categories to be considered (Silva, 2021). (2) Inventory analysis: 

The second step is to collect data on the inputs and outputs of the product or service 

throughout its life cycle. This includes data on the raw materials used, the energy consumed 

and the emissions and wastes produced (Surovtseva et al., 2022; Munasinghe et al., 2021). 

(3) Impact assessment: The third step is to calculate the environmental impacts of the 

product or service. This is done using impact assessment methods that convert the inventory 

data into environmental impact indicators, such as greenhouse gas emissions, water use and 

air pollution (Ji & Wang, 2021). (4) Interpretation: The fourth and final step is to interpret 

the results of the LCA and draw conclusions. This includes identifying the most significant 

environmental impacts of the product or service and assessing the potential for improvement.   

LCA is a valuable tool for understanding and reducing the environmental impacts of products 

and services. It can be used by businesses, governments and non-profit organizations to make 

informed decisions about product design, production and use (Silva, 2021). LCA is a 

complex process and there are a number of different methods and tools that can be used. 

However, the basic steps outlined above are common to all LCAs. Source: (https://pre-

sustainability.com/articles/life-cycle-assessment-lca-basics) 

 

 

 

 

 

 

 

 



A.-A. BOURAMDANE: ASSESSING THE ENVIRONMENTAL IMPACT OF HYDROGEN… 

 

 
91 

 

Overall, PEMFCs have made significant progress and are well-suited for certain 

applications, such as fuel cell vehicles and portable electronic devices. However, 

overcoming challenges related to cost, durability, hydrogen infrastructure and broader 

fuel options is necessary to make them more widely applicable across various sectors and 

industries (Tellez-Cruz et al., 2021). 

 

2.2.2. Solid Oxide Fuel Cells (SOFCs) 

Solid Oxide Fuel Cells (SOFCs) are a type of high-temperature fuel cell known for 

their efficiency and versatility in a wide range of applications (Wachsman & Lee, 2011; 

Li et al., 2022, September). 
SOFCs generate electricity through an electrochemical process that involves the 

direct oxidation of fuel (typically hydrogen, natural gas or other hydrocarbons) and 

oxygen from the air. 

They consist of three main components (Figure 3). The anode is typically made of 

nickel and serves as the site for fuel oxidation. At the anode (negative electrode): 

Hydrogen gas (H2) is oxidized to produce electrons (e-) and hydrogen ions (H+): H2
- > 

2H+ + 2e+. The cathode is typically made of a perovskite material and facilitates oxygen 

reduction.  

At the cathode, oxygen ions combine with electrons and react with any residual 

hydrogen to form water(𝐻2𝑂): 𝑂2
−  +  2𝑒−  +  𝐻2−  >  𝐻2𝑂.  Oxygen ions migrate 

through the solid oxide electrolyte from the cathode to the anode, while electrons flow 

externally in the opposite direction, creating an electric current. The overall result of these 

reactions is the generation of electricity, with water as the primary byproduct (Hagen et 

al., 2019). SOFCs are known for their high electrical efficiency, typically exceeding 60%, 

and can reach up to 85% in combined heat and power (CHP) configurations by capturing 

and utilizing waste heat (Wachsman & Lee, 2011; Li, et al., 2022, September). 

Their high operating temperature allows for efficient utilization of waste heat, 

making them suitable for CHP systems in which electricity and heat are simultaneously 

generated (Braun, 2010; Abdalla et al., 2020). 

SOFCs can use a wide range of fuels (Weber, 2021), including hydrogen, natural 

gas, biogas, syngas (a mixture of hydrogen and carbon monoxide) and even liquid 

hydrocarbons like diesel and jet fuel. Their internal ability to directly reform 

hydrocarbons internally is advantageous for certain applications, reducing the need for 

external reforming processes (Jo et al., 2020). 

SOFCs are known for their long service life and durability (Horlick et al., 2023, 

August), especially in stationary and industrial applications (Xu et al., 2021; Jo et al., 

2020). They have few moving parts, which reduces wear and tear. Their solid-state nature 

and robust materials contribute to their reliability. 

SOFCs operate as solid-state devices, which means they are less susceptible to 

corrosion and thermal stress compared to some other fuel cell types (Zheng et al., 2022).  

SOFCs produce low emissions, especially when fueled with hydrogen or clean 

hydrocarbon sources. They generate virtually no nitrogen oxides (NOx) or particulate 

matter (Wachsman & Lee, 2011).  

SOFCs operate quietly, which is advantageous in applications where noise 

reduction is important (Santarelli et al., 2009; Adavbiele, 2014). 
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Figure 2: Diagram of the Proton-Exchange Membrane Fuel Cell (PEMFC). A PEM fuel cell consists of 

three main components: (1) anode (i.e., the negative electrode where hydrogen gas is fed. The 

hydrogen molecules are split into protons and electrons at the anode catalyst layer. The protons pass 

through the proton exchange membrane while the electrons flow through an external circuit to the 

cathode), (2) Cathode (i.e., the cathode is the positive electrode where oxygen gas is fed. The oxygen 

molecules react with the electrons from the external circuit to form water molecules), (3) Proton 

Exchange Membrane (PEM) (i.e., the PEM is a thin, solid polymer that allows protons to pass 

through but blocks electrons. This forces the electrons to flow through the external circuit, 

generating electricity). The PEM is sandwiched between the anode and cathode, and the entire 

assembly is compressed by bipolar plates. The bipolar plates provide electrical contact between the 

electrodes and collect the current generated by the fuel cell. The operation of PEM fuel cells is as 

follows: (1) hydrogen gas is fed to the anode and oxygen gas is fed to the cathode; (2) the hydrogen 

molecules are split into protons and electrons at the anode catalyst layer; (3) the protons pass through 

the PEM while the electrons flow through an external circuit to the cathode; (4) at the cathode, the 

oxygen molecules react with the electrons from the external circuit to form water molecules; (5) the 

water molecules are removed from the fuel cell (Vishnyakov, 2006; Tellez-Cruz et al., 2021). The 

overall reaction in a PEM fuel cell is: 2H2 +O2− > 2H2O +Electricity. PEM fuel cells are highly 

efficient (Tianyi & Lianfeng, 2022, November; Xue et al., 2021) and produce clean electricity 

(Fernandes et al., 2023, April), with water as the only by-product. They are also relatively quiet 

(Villalba-Herreros et al., 2020) and have a fast start-up time (Gkanas et al., 2022). These 

characteristics make them ideal for a variety of applications, including transportation, power 

generation and portable electronics (Watve et al., 2021). Source:          

(https://en.wikipedia.org/wiki/Proton-exchange_membrane_ fuel_cell) 
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Figure 3: Scheme of a Solid-Oxide Fuel Cell (SOFC). A SOFC is an electrochemical device that converts 

chemical energy from a fuel into electrical energy. SOFCs operate at high temperatures (600–1000 

°C), which allows them to use a wide range of fuels, including natural gas, methane, propane and 

even biodiesel. SOFCs consist of three main components: (1) the anode (i.e., the negative electrode 

where the fuel is fed. The fuel molecules are oxidized at the anode catalyst layer, releasing electrons 

and producing positively charged ions); (2) the cathode (i.e., the positive electrode where oxygen is 

fed. The oxygen molecules react with the electrons from the external circuit to form negatively 

charged ions); and the (3) electrolyte (i.e., a solid oxide material that allows oxygen ions to pass 

through, but blocks electrons. This forces the electrons to flow through the external circuit, 

generating electricity). The anode and cathode are separated by the electrolyte and the entire 

assembly is compressed by bipolar plates. The bipolar plates provide electrical contact between the 

electrodes and collect the current generated by the fuel cell. The operation of SOFCs is as follows: 

(1) Fuel is fed to the anode and oxygen is fed to the cathode; (2) The fuel molecules are oxidized at 

the anode catalyst layer, releasing electrons and producing positively charged ions; (3) The 

positively charged ions pass through the electrolyte to the cathode; (4) At the cathode, the oxygen 

molecules react with the electrons from the external circuit to form negatively charged ions; (5) The 

negatively charged ions pass through the electrolyte back to the anode. The overall reaction in an 

SOFC is Fuel +O2− > CO2 + H2O + Electricity (Hagen et al., 2019). SOFCs are highly efficient 

(Li et al., 2022, September) and produce clean electricity with water and carbon dioxide as the only 

by-products (Wachsman & Lee, 2011). They are also relatively quiet  (Santarelli et al., 2009; 

Adavbiele, 2014) and have a long lifespan (Horlick et al., 2023, August). These characteristics make 

them ideal for a variety of applications, including stationary power generation, transportation and 

distributed power generation (Modena et al., 2006). SOFCs are still under development, but they 

have the potential to play a significant role in the future of energy production (Li et al., 2022, 

September). Source:  (https://en.wikipedia.org/wiki/Solid_oxide_fuel_cell). 
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SOFCs operate at very high temperatures, typically between 600 and 1000°C. This 

high-temperature operation can lead to challenges related to material selection, i.e., high 

operating temperatures can cause material compatibility issues, especially with 

interconnects and seals. Developing materials that can withstand these conditions is 

essential), thermal management and slow start-up times, which can increase complexity 

and energy consumption (Minary-Jolandan, 2022). 

The high operating temperature necessitates expensive materials and components, 

including thermal insulation, which can contribute to the overall cost of SOFC systems 

(Minary-Jolandan, 2022; Sajid et al., 2022) 

SOFCs are relatively bulky and heavy compared to some other fuel cell types, 

limiting their use in portable and lightweight applications (Sajid et al., 2022). 

SOFCs are relatively brittle due to their ceramic components, making them 

susceptible to mechanical stress and thermal cycling (Christensen et al., 2023; Wachsman 

& Lee, 2011). 

Contaminants in fuels, such as sulfur in natural gas, can poison the catalysts and 

reduce performance. Fuel purification may be required (Li et al., 2014).  

Achieving and maintaining high operating temperatures can result in slow start-up 

times, which may not be suitable for applications requiring rapid response (He et al., 

2023).  

Frequent start-stop cycles can lead to thermal stress and reduce the lifespan of 

SOFCs, making them less suitable for applications requiring rapid cycling (Baldi et al., 

2018, June).  

Like other fuel cells, SOFCs face infrastructure challenges related to fuel storage, 

distribution and refueling for hydrogen-based systems (Abdalla et al., 2020). 

SOFC systems can be complex, requiring control systems and auxiliary components 

to manage temperature and performance effectively (Wachsman & Lee, 2011). 

SOFCs have a wide range of applications (Horlick et al., 2023, August), including 

stationary power generation for homes, businesses and industries (Roth & Tricoli, 2023, 

May), as well as combined heat and power (CHP) systems (Braun, 2010; Abdalla et al., 

2020). 

They are also used in auxiliary power units (APUs) for vehicles (Salameh, 2008), 

marine applications (Li et al., 2022, September) and as portable generators for military 

and remote operations (Chu et al., 2019).  

Overall, SOFCs offer high efficiency, low emissions and fuel flexibility, making 

them well-suited for stationary and industrial applications. However, their high operating 

temperature, cost and material challenges are areas of ongoing research and development 

to improve their competitiveness and expand their use across various sectors. 

 

2.2.3. Alkaline Fuel Cells (AFCs) 

Alkaline Fuel Cells (AFCs) are a type of fuel cell that uses a liquid alkaline 

electrolyte, usually a concentrated solution of potassium hydroxide (KOH), which is 

typically stored in a reservoir and continuously supplied to the cell. The electrochemical 

reaction in an AFC occurs at the anode and cathode, with hydrogen (H2) typically used 

as the fuel and oxygen (O2) as the oxidant (Figure 4). The overall reaction is as follows: 

at the anode (2𝐻2  +  4𝑂𝐻− → 4𝐻2𝑂 +  4𝑒−) and at the cathode:  𝑂2 +  4𝐻2𝑂 +
 4𝑒−  →  4𝑂𝐻−    (Xiao et al., 2021). 
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Figure 4: Scheme of an Alkaline Fuel Cell (AFC). An AFC consists of the following 
components: (1) the anode (i.e., the negative electrode where hydrogen gas is fed. The 
hydrogen molecules are split into protons and electrons at the anode catalyst layer. The 
protons pass through the electrolyte, while the electrons flow through an external circuit to 
the cathode); (2) the cathode (i.e., the positive electrode where oxygen gas is fed. The oxygen 
molecules react with the electrons from the external circuit to form water molecules); (3) the 
electrolyte (i.e., an aqueous solution of potassium hydroxide (KOH). The KOH solution 
allows protons to pass through, but blocks electrons. This forces the electrons to flow through 
the external circuit, generating electricity) and (4) the separator (i.e., a porous material that 
prevents the anode and cathode from coming into direct contact. This is important to prevent 
the hydrogen and oxygen from reacting directly, which would not produce electricity). The 
anode and cathode are separated by the electrolyte and separator and the entire assembly is 
compressed by bipolar plates. The bipolar plates provide electrical contact between the 
electrodes and collect the current generated by the fuel cell. The operation of AFCs is as 
follows: (1) hydrogen gas is fed to the anode and oxygen gas is fed to the cathode; (2) the 
hydrogen molecules are split into protons and electrons at the anode catalyst layer; (3) the 
protons pass through the electrolyte to the cathode; (4) at the cathode, the oxygen molecules 
react with the electrons from the external circuit to form water molecules; (5) the water 
molecules are removed from the fuel cell. The overall reaction in an AFC is: 2H2 +O2 → 
2H2O + Electricity  (Xiao et al., 2021). AFCs are highly efficient  (Cai & Rozario, 2022; 
Haritha et al., 2022) and produce clean electricity, with water as the only by-product 
(Sapucaia et al., 2023). They are also relatively quiet and have a fast start-up time (Zhao et 
al., 2021). However, AFCs are more expensive than other types of fuel cells, and they are 
not as durable. For these reasons, AFCs are not as widely used as other types of fuel cells 
(Slade et al., 2018). AFCs are still under development, and researchers are working to 
improve their durability and reduce their cost. If these challenges can be overcome, AFCs 
have the potential to play a significant role in the future of energy production. Source: 
(Vaghari et al., 2013).   
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AFCs are known for their high efficiency in converting chemical energy into 

electricity, typically in the range of 50–70%, depending on operating conditions and 

materials used, making them suitable for various applications where efficiency is crucial 

(Cai & Rozario, 2022; Haritha et al., 2022). 

AFCs produce low emissions, especially when using pure hydrogen as a fuel 

source, as they generate only water and heat as byproducts (Sapucaia et al., 2023).   

AFCs have demonstrated good durability and long service life in certain 

applications, such as space missions. They can operate reliably for thousands of hours 

without significant degradation (Xiao et al., 2021). 

AFCs can start up quickly and respond rapidly to changes in power demand, making 

them suitable for applications requiring dynamic operation (Zhao et al., 2021). 

AFCs typically operate at moderate temperatures, ranging from 60°C to 250°C, 

making them less thermally demanding compared to Solid Oxide Fuel Cells (SOFCs). 

The moderate operating temperature of AFCs simplifies thermal management and 

extends the lifespan of materials compared to high-temperature fuel cells (Sapucaia et al., 

2023; Maimani et al., 2022, October). 

AFCs require high-purity hydrogen as a fuel source. Impurities such as carbon 

monoxide (CO) and sulfur compounds can poison the catalyst and degrade performance 

(Slade et al., 2018).  

The liquid electrolyte used in AFCs can lead to issues related to electrolyte leakage 

and handling, making them less suitable for portable applications (Jiang & Li, 2021).   

AFCs use precious metal catalysts like platinum, which can be costly and sensitive 

to impurities, potentially driving up system costs (Jiang & Li, 2021; Xiao et al., 2021) 

The alkaline environment in AFCs can challenge the compatibility of materials used 

in cell components, such as seals and bipolar plates. Special materials may be required to 

withstand these conditions (Tang et al., 2022).  

AFCs operate within a relatively narrow temperature range compared to other fuel 

cell types. This limitation can impact their versatility, especially in extreme 

environmental conditions (Sapucaia et al., 2023; Maimani et al., 2022, October). 

As with other fuel cell technologies, developing a hydrogen infrastructure for 

production, storage and distribution is essential for widespread AFC deployment 

(Maimani et al., 2022, October).  

AFCs can be bulky and heavy compared to some other fuel cell types, which can 

limit their use in portable and lightweight applications (Jiang & Li, 2021). 

Traditional AFCs have relied on precious metal catalysts, which are expensive and 

subject to supply and cost fluctuations (Bouramdane, 2023q). 

AFCs have found applications in various sectors, thanks to their high efficiency and 

relatively low emissions (Schneider-Coppolino et al., 2022, July).  

Some notable applications include: 

 Space Exploration: AFCs were initially developed for space missions by NASA 

and have been used in various spacecraft. Their reliability, long life and ability to 

operate in a microgravity environment make them suitable for powering spacecraft 

and space stations (Nash et al., 2014). 

 Aircraft and Drones: AFCs have been explored for use in aircraft and drones, 

where they offer the potential for longer endurance and reduced emissions 

compared to traditional internal combustion engines. They are particularly suitable 

for high-altitude and long-endurance missions (Bradley, 2022, June).  
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 Marine Applications: AFCs have been considered for maritime propulsion 

systems, including submarines, ferries and research vessels. Their high energy 

density and efficiency make them attractive for applications where space and 

weight constraints are less critical (Sürer & Arat, 2022). 

 Military and Defense: AFCs can be used in military applications, such as portable 

power generation for soldiers in the field, where their quiet operation, long runtime 

and low emissions are advantageous (Sapru et al., 1997, July).  

 Stationary Power Generation: AFCs can be employed for stationary power 

generation in residential, commercial and industrial settings (Visvanathan et al., 

2023). They can operate as combined heat and power (CHP) systems, providing 

both electricity and useful heat. These systems offer high efficiency and can reduce 

energy costs (Wang et al., 2021). 

 Remote and Off-Grid Power: AFCs are suitable for providing power in remote or 

off-grid areas where establishing traditional power infrastructure is challenging. 

They can be used in telecommunications, remote monitoring stations and remote 

communities (Zhao et al., 2023). 

 Backup Power Systems: AFCs can serve as backup power systems for critical 

infrastructure, data centers, hospitals and other facilities that require uninterrupted 

power in case of grid failures (Fernández et al., 2017). 

 Water and Wastewater Treatment: AFCs can be used to generate electricity from 

the hydrogen produced during the electrolysis of water in water and wastewater 

treatment facilities. This energy can help offset the energy requirements of the 

treatment process (Shu-bao, 2008). 

 Hydrogen Refueling Stations: AFCs can be used in hydrogen refueling stations to 

generate hydrogen on-site through water electrolysis. This can help provide a local 

source of hydrogen for fuel cell vehicles (Kim et al., 2022). 

 Grid Support: AFCs can be part of distributed energy systems that provide grid 

support, including peak shaving and load leveling. They can help stabilize the grid 

by responding quickly to changes in demand (Zhao et al., 2023). 

Overall, AFCs offer advantages in terms of efficiency and rapid response, but they 

also have specific limitations related to fuel purity and material compatibility. Their use 

has historically been more prevalent in niche applications, such as space exploration, but 

ongoing research aims to address some of these challenges and broaden their potential 

applications. 

 

3.     Results 

 

In this study, we applied the Attributional Life Cycle Assessment (ALCA) 

methodology to assess the environmental impact or carbon footprint of three different 

hydrogen fuel cell technologies: Proton Exchange Membrane Fuel Cells (PEMFCs), 

Solid Oxide Fuel Cells (SOFCs) and Alkaline Fuel Cells (AFCs). The functional unit 

considered for this assessment was the production of 1 megawatt-hour (MWh) of 

electricity using each of these fuel cell technologies, with the system boundaries defined 

as "cradle-to-gate” (Section 2). Global Warming Potential (GWP) was chosen as the 

impact category for evaluating the environmental performance of these technologies. 
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3.1. Critical Stages and Their Environmental Impact 

1. Hydrogen Production (Crude Oil Reforming): 

 PEMFC: The production of hydrogen for PEMFCs predominantly involves steam 

methane reforming (SMR) of natural gas. This process is energy-intensive and 

releases a significant amount of greenhouse gases, particularly carbon dioxide 

(CO2) (Bouramdane, 2023p). The GWP associated with hydrogen production for 

PEMFCs is assumed to be 1000 kg of CO2 equivalent per MWh. 

 SOFC: Hydrogen production for SOFCs also relies on SMR but can utilize a wider 

range of feedstocks, including biomass and renewable sources (Section 2.2.2). 

Therefore, the GWP associated with hydrogen production for SOFCs was assumed 

to be 800 kg CO2 equivalent per MWh, which is lower than that of PEMFCs. 

 AFC: Alkaline Fuel Cells primarily use alkaline electrolysis to produce hydrogen, 

which can be powered by renewable energy sources, reducing the GWP to 500 kg 

CO2 equivalent per MWh, making it the most environmentally friendly option for 

hydrogen production (Bouramdane, 2023p).  

 

2. Fuel Cell Assembly and Manufacturing: All three fuel cell technologies 

require the manufacturing of components such as membranes, electrodes and catalysts. 

However, the energy and material requirements for manufacturing vary between 

technologies, impacting their GWP (Ahmed et al., 2023). The GWP associated with the 

manufacturing phase was assumed to be highest for PEMFCs, followed by SOFCs and 

AFCs, with values of 200 kg CO2 equivalent per MWh, 150 kg CO2 equivalent per MWh 

and 100 kg CO2 equivalent per MWh, respectively. 

3. Electricity Generation: During electricity generation, all three fuel cell 

technologies produce electricity efficiently with minimal greenhouse gas emissions, 

resulting in negligible GWP contributions (Ahmed et al., 2023). 

In the simplified hypothetical scenario provided earlier, the critical stage for each 

technology, based on their respective GWP values, would be as follows “Hydrogen 

Production (Crude Oil Reforming)”: 

 For PEMFCs: The critical stage with the highest GWP impact is hydrogen 

production, specifically through processes like steam methane reforming (SMR), 

which can have a high carbon footprint. In this scenario, reducing the GWP of 

hydrogen production is essential for mitigating the overall environmental impact of 

PEMFCs. 

 For SOFCs: Similarly, the critical stage with the highest GWP impact is hydrogen 

production, but SOFCs utilize a more efficient and cleaner method compared to 

PEMFCs. Nevertheless, improvements in hydrogen production can further reduce 

the environmental impact of SOFCs. 

 For AFCs: In this hypothetical scenario, AFCs have the lowest GWP impact in 

hydrogen production. Therefore, AFCs already exhibit an environmentally friendly 

approach to hydrogen production, making this stage less critical in terms of GWP. 

It is important to note that in a real-world assessment, the critical stage may vary 

depending on numerous factors, including the specific technology variants, energy 

sources and operational practices. Conducting a comprehensive life cycle assessment 

would provide a more accurate identification of critical stages and their associated 

impacts (Ahmed et al., 2023). Based on the critical stages analyzed, the total GWP for 
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producing 1 MWh of electricity using each fuel cell technology is as follows: PEMFC 

(1200 kg CO2 equivalent per MWh), SOFC (950 kg CO2 equivalent per MWh), and AFC 

(600 kg CO2 equivalent per MWh). 

 

3.2. Recommendations 

The following recommendations are intended to highlight potential strategies for 

reducing the environmental impact of hydrogen fuel cell technologies based on a 

simplified assessment: 

1. Transition to Green Hydrogen for PEMFCs: Given their higher GWP for 

hydrogen production, transitioning to the production of "green hydrogen" is crucial. This 

can be achieved by using renewable energy sources, such as wind or solar power 

(Bouramdane, 2021, October), to power the electrolysis process, significantly reducing 

carbon emissions associated with hydrogen production (Bouramdane, 2023p; 2023i).  

2. Improve Manufacturing Efficiency for All Technologies: Manufacturers 

should focus on enhancing material efficiency and adopting cleaner production processes 

to reduce the GWP associated with fuel cell manufacturing. For example, exploring 

lightweight materials and more energy-efficient manufacturing techniques can help lower 

GWP values for manufacturing stages. 

3. Material Recycling and Sustainability for All Technologies: Promote 

material recycling and sustainability practices throughout the life cycle. Design fuel cell 

components for easy disassembly and recycling, reducing the need for raw materials and 

minimizing the GWP associated with material extraction and production. 

4. Carbon Capture and Utilization (CCU) for All Technologies: Investigate the 

feasibility of carbon capture and utilization technologies to capture and repurpose carbon 

emissions generated during hydrogen production or manufacturing processes. CCU can 

help offset GWP by converting carbon emissions into valuable products (Bouramdane, 

2023h). 

 5. Life Cycle Perspective for Stakeholders: Encourage stakeholders to consider 

the entire life cycle of fuel cell technologies when making decisions. Recognize that 

focusing solely on operational phase emissions may not provide a complete picture of 

environmental impact, and upstream processes like hydrogen production and 

manufacturing significantly contribute to GWP (Bouramdane, 2023p). 

6. Research and Innovation for the Industry: Invest in research and development 

to create more energy-efficient processes, advanced materials and improved catalysts 

(Bouramdane, 2023p). Innovation can lead to breakthroughs in reducing the 

environmental impact of fuel cell technologies across their life cycle. 

It is important to note that these recommendations are based on the simplified 

hypothetical values provided earlier and should be adapted and refined based on real-

world data and detailed life cycle assessments. Implementing these recommendations can 

help reduce the environmental impact of hydrogen fuel cell technologies and contribute 

to a more sustainable energy future. 

 

4.     Discussion 

 

The results of this hypothetical Attributional Life Cycle Assessment (ALCA) 

provide insights into the environmental performance of three distinct hydrogen fuel cell 

technologies: Proton Exchange Membrane Fuel Cells (PEMFCs), Solid Oxide Fuel Cells 

(SOFCs) and Alkaline Fuel Cells (AFCs). The assessment focused on two critical stages: 
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hydrogen production and fuel cell assembly/manufacturing, with an emphasis on Global 

Warming Potential (GWP) as the impact category. It is essential to recognize that these 

results are based on simplified hypothetical values and are intended for illustrative 

purposes. 

 

1. Hydrogen Production Stage: 

 PEMFCs: The assessment identified hydrogen production as the most 

environmentally impactful stage for PEMFCs. This emphasizes the urgency of 

transitioning to green hydrogen production methods, such as renewable-powered 

electrolysis, to significantly reduce carbon emissions (Bouramdane, 2023p; 2023i). 

Additionally, exploring carbon capture and utilization (CCU) technologies could 

offer further mitigation potential (Bouramdane, 2023h). 

 SOFCs: SOFCs demonstrated a lower GWP for hydrogen production compared to 

PEMFCs, highlighting their environmental advantage in this aspect. Nevertheless, 

optimization opportunities remain, such as exploring renewable-powered hydrogen 

sourcing and improving process efficiency to further reduce emissions. 

 AFCs: AFCs exhibited the lowest GWP for hydrogen production among the three 

technologies. This suggests that AFCs already employ environmentally friendly 

hydrogen production methods. Integrating renewable energy sources into the 

hydrogen production process can enhance their sustainability further. 

2. Fuel Cell Assembly/Manufacturing Stage: 

 PEMFCs: The manufacturing stage for PEMFCs was identified as having the 

highest GWP. Recommendations include a focus on material efficiency, supply 

chain sustainability and the adoption of eco-friendly production methods to reduce 

environmental impact. 

 SOFCs: SOFC manufacturing exhibited a moderate GWP. Enhancing 

manufacturing techniques, exploring advanced materials and embracing circular 

economy practices can contribute to reduced emissions and resource efficiency. 

 AFCs: AFC manufacturing displayed the lowest GWP among the three 

technologies. To maintain this advantage, recommendations include improving 

efficiency, durability and quality control, along with localized production 

strategies. 

The practical implications derived from this study carry substantial significance for 

multiple stakeholders, encompassing policymakers, industry leaders and the research 

community. A key takeaway is the imperative of transitioning towards sustainable 

practices within hydrogen fuel cell technologies. This includes prioritizing the adoption 

of green hydrogen production techniques, streamlining and improving manufacturing 

procedures and facilitating the seamless integration of renewable energy sources into 

these innovative technologies. By embracing and implementing these recommendations, 

a substantial advancement can be made in augmenting the overall environmental sustain- 

ability and efficiency of hydrogen fuel cell technologies. 

In this simplified hypothetical analysis, it is essential to acknowledge the limitations 

and uncertainties associated with the values provided. Real-world assessments would 

require extensive data gathering, location-specific considerations and technology-specific 

variations. Furthermore, the recommendations offered here should be regarded as starting 

points and adapted to the unique circumstances and goals of each hydrogen fuel cell 

technology application. In conclusion, the results and recommendations  emphasize  the  

significance  of  sustainable  hydrogen  sourcing and efficient manufacturing practices to 
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reduce the environmental impact of hydrogen fuel cell technologies. These findings 

underscore the need for continued research, innovation and collaboration among 

stakeholders to advance the environmental sustainability of these technologies in practical 

applications. 

 

5.      Conclusion 

 

5.1. Research Motivation and Methodology 

Hydrogen fuel cell technologies hold immense promise as clean energy solutions, 

with the potential to reduce greenhouse gas emissions and mitigate climate change. As 

these technologies become increasingly integral to the global energy landscape, it is 

essential to comprehensively assess their environmental impact. This study aimed to 

address this imperative by applying Attributional Life Cycle Assessment (ALCA) to 

evaluate the environmental performance of three prominent hydrogen fuel cell 

technologies: Proton Exchange Membrane Fuel Cells (PEMFCs), Solid Oxide Fuel Cells 

(SOFCs) and Alkaline Fuel Cells (AFCs). 

 

5.2. Existing Research and Knowledge Gap 

Prior research has explored various aspects of hydrogen fuel cell technologies, often 

focusing on their operational efficiency and advantages in reducing local air pollutants. 

However, there remains a significant knowledge gap regarding their holistic 

environmental impact, particularly when considering the entire life cycle from raw 

material extraction to end-of-life disposal. This study sought to bridge this gap by 

conducting a comprehensive ALCA that addressed this multifaceted aspect. 

 

5.3. Research Questions and Originality 

The central research questions guiding this study were: How do different hydrogen 

fuel cell technologies compare in terms of their environmental impact, especially 

considering critical stages like hydrogen production and fuel cell assembly? What 

specific recommendations can be derived from these findings to enhance the 

environmental sustainability of each technology? The originality of this study lies in its 

holistic approach, utilizing ALCA to evaluate the GWP impact, considering both critical 

stages and providing tailored recommendations for each technology. 

 

5.4. Research Findings 

The findings of this study have highlighted the environmental nuances associated 

with each hydrogen fuel cell technology. Hydrogen production was identified as a critical 

stage with significant GWP contributions, emphasizing the need for green hydrogen 

production methods. Among the technologies, AFCs exhibited the lowest GWP for both 

hydrogen production and manufacturing. SOFCs demonstrated advantages in hydrogen 

production, whereas PEMFCs showed potential for improvement in both hydrogen 

production and manufacturing stages. Detailed recommendations were provided to 

address these specific findings. 
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5.5. Practical Implications 

The practical implications of this research are profound, offering insights for 

policymakers, industry stakeholders and researchers. The study underscores the 

importance of transitioning to green hydrogen production methods, optimizing 

manufacturing processes and integrating renewable energy sources into these 

technologies. Implementing these recommendations can significantly enhance the 

environmental sustainability of hydrogen fuel cell technologies. 

 

5.6. Limitations 

Several limitations must be acknowledged. Firstly, the values used in this study 

were hypothetical and simplified for illustrative purposes. Real-world assessments would 

require precise data and location-specific considerations. Additionally, ALCA, while 

comprehensive, is inherently dependent on available data and methodology, which may 

evolve over time. 

 

5.7. Future Directions 

Future research in this domain should focus on refining ALCA methodologies, 

gathering extensive real-world data and conducting more nuanced assessments of 

hydrogen fuel cell technologies. Moreover, exploring emerging technologies and their 

potential environmental benefits, such as green hydrogen production methods and 

advanced materials, presents an exciting avenue for future research. 

In conclusion, this study has contributed valuable insights into the environmental 

impact of hydrogen fuel cell technologies, emphasizing the significance of sustainable 

practices across their life cycle. The findings offer a foundation for informed decision-

making, ultimately advancing the adoption of clean and sustainable energy solutions on 

a global scale. 
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